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Centrality is widely recognized as one of the most critical mea-
sures to provide insight into the structure and function of complex
networks. While various centrality measures have been proposed
for single-layer networks, a general framework for studying cen-
trality in multilayer networks (i.e., multicentrality) is still lacking.
In this study, a tensor-based framework is introduced to study
eigenvector multicentrality, which enables the quantification of
the impact of interlayer influence on multicentrality, providing a
systematic way to describe how multicentrality propagates across
different layers. This framework can leverage prior knowledge
about the interplay among layers to better characterize multicen-
trality for varying scenarios. Two interesting cases are presented
to illustrate how to model multilayer influence by choosing appro-
priate functions of interlayer influence and design algorithms to
calculate eigenvector multicentrality. This framework is applied
to analyze several empirical multilayer networks, and the results
corroborate that it can quantify the influence among layers and
multicentrality of nodes effectively.

multilayer networks | eigenvector centrality | PageRank centrality

Centrality quantifies the importance of nodes in a graph and
has been widely studied to understand the structure and

function of complex networks (1, 2). For example, it can be used
to identify the most influential person in an online social net-
work (3), the most crucial artery in transport congestion (4), or
the most important financial institution in the global economy
(5). Over 30 different centrality measures (e.g., degree centrality,
betweenness centrality, closeness centrality, eigenvector central-
ity, and control centrality) have been examined in the literature
(6–9). Among these, eigenvector centrality, defined as the lead-
ing eigenvector of the adjacency matrix of a graph, has received
increasing attention (10, 11). It is worth noting that PageRank, a
variant of eigenvector centrality, is the primary algorithm used in
Google’s search engine (12, 13).

Notably, most previous studies have focused on eigenvector
centrality in a single-layer network, in which all nodes/links are
assumed to be of the same type (centrality homogeneous). As
revealed recently (14–19), many practical complex systems, rang-
ing from the Internet to airline networks, have multiple types of
nodes and/or links between nodes. Multilayer networks, which
consist of multiple layers of nodes with intra- and interlayer
links, can be used to model such complex systems. Fig. 1 shows
2 examples of multilayer networks (see SI Appendix, Fig. S1
for more examples). Simply aggregating a multilayer network
into a single-layer one would obviously lead to a miscalcula-
tion of centrality. Recent work on eigenvector-like centrality
in multilayer networks either assigned constant weights to pre-
determine interlayer influence [which can be regarded as the
gain or loss of the interplay strength between 2 layers (20)]
or focused on a special case of multilayer networks, i.e., the
so-called multiplex networks (where all layers share the same
set of nodes, and interlayer links exist only between counter-

part nodes) (21–24). It is of significant interest to develop a
framework for studying eigenvector-like centrality in general
multilayer networks, hereafter referred to as eigenvector multi-
centrality. In this study, we introduce a tensor-based framework
that enables the quantification of the relationship between inter-
layer influence and eigenvector multicentrality. It is challenging
to compute eigenvector multicentrality of nodes in such a frame-
work since interlayer influence and eigenvector multicentrality
are interdependent. We prove the existence and uniqueness of
eigenvector multicentrality for given appropriate forms of inter-
layer influence. We also design efficient algorithms to calculate
it for 2 interesting scenarios. This framework offers an approach
for modeling and quantifying the interlayer interactions in mul-
tilayer networks, providing a systematic way of characterizing
eigenvector multicentrality. Experimental results based on sev-
eral real-world multilayer networks corroborate our analytical
results.

Results
A Tensor-Based Framework for Studying Eigenvector Multicentrality.
In the calculation of eigenvector centrality of nodes in a single-
layer network, a directed link to a node can be viewed as a
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Fig. 1. Examples of multilayer networks. (A) A network of web pages in Wikipedia can be considered as a multilayer network. Layers represent subjects,
and nodes denote words (or terms) connected by hyperlinks. Colorized links are intralayer links while gray ones are interlayer links. (B) A European airline
network with 3 layers can be modeled as a multiplex network, which contains the same set of nodes in all layers. Intralayer links in 1 layer represent flight
routes operated by an airline and interlayer links exist only between the same nodes (airports) in different layers. Only a portion of interlayer links is
shown to not complicate the figure. A single-layer network obtained by simply aggregating all airports and flight routes is also shown at the bottom. The
geographic data are provided by OpenStreetMap.

vote of support. Each node fairly propagates its entire centrality
score to its neighbors recursively. The eigenvector centrality of a
node is defined as the scores that it gathers from its neighbors
after appropriate normalization in the steady state. Formally,
the vector consisting of the eigenvector centrality of all nodes is
defined as the leading left eigenvector of the adjacency matrix
associated with the single-layer network. We generalize this
definition to multilayer networks by taking into account inter-
layer influence among layers. Specifically, a multilayer network
is modeled as M= (L, E), where L= {Lα;α= 1, 2, · · · ,K} is
a collection of graphs Lα = (Vα,Eα) representing layers inM;
Vα = {v1,α, v2,α, · · · vnα,α} is the set of nodes, where nα denotes
the number of nodes, and Eα is the set of intralayer links
in layer α; and E = {Eαβ ⊆Vα×Vβ ;α,β= 1, 2, · · · ,K (α 6=β)}
contains the interlayer links inM (16). To avoid confusion, we
use Latin letters {i , j , · · · } to indicate nodes and Greek letters
{α,β, · · · } to indicate layers. Tensors provide a general mathe-
matical tool to describe high-dimensional objects (25, 26), and
notably, tensors have been used to study multilayer networks
(27–29). Specifically, a fourth-order tensor M iα

jβ , called the adja-
cency tensor, is used to encode a directed, weighted link from
node i in layer α to node j in layer β (see SI Appendix, section
I for further details on tensorial representations). We further
introduce the influence tensor W α

β , which is a second-order ten-
sor measuring the interlayer influence from layer α to layer β.
In our framework, the influence tensor W may be treated as a
constant tensor when quantitative knowledge is available. The
interaction tensor is defined as H iα

jβ =W α
β M iα

jβ , encoding the
interaction from node i in layer α to node j in layer β. Intu-
itively, when the influence from layer α to layer β is greater than

1, the centrality scores propagating along the links from layer α
to layer β will be magnified, and vice versa.

The second-order tensor Φiα is defined as the solution to the
tensorial equation

H iα
jβ Φiα =λβΦjβ , [1]

where λβ is a coefficient related to layer β, and the Einstein
notation (30) is adopted here (see SI Appendix, section I for
further details). Because Φ is an eigenvector-like centrality, it
is hereafter referred to as eigenvector multicentrality, and Φiα

represents the eigenvector multicentrality score of node i in
layer α. In the calculation of eigenvector multicentrality, after
each node propagates its entire multicentrality score to neigh-
bors, the scores from layer α to layer β are multiplied by the
influence coefficient W α

β . Hence, we can obtain the eigenvec-
tor multicentrality via appropriate normalization in the steady
state. Note that the normalizing coefficient λβ could be different
for different layers in a multilayer network. This differs from the
eigenvector centrality in a single-layer network, where all nodes
share a common normalizing coefficient λ1 (namely, the leading
eigenvalue of the adjacency matrix).

Many existing models can be incorporated into our eigen-
vector multicentrality framework by choosing the influence ten-
sor W appropriately. For instance, in an author–document
heterogeneous network, unweighted interlayer links connect
documents to their authors. A directed unweighted intralayer
link exists between 2 documents if 1 document refers to the
other and the undirected weighted intralayer link between 2
authors represents their social tie. The multicentrality in such an

15408 | www.pnas.org/cgi/doi/10.1073/pnas.1801378116 Wu et al.
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author–document network was defined as the leading eigenvec-
tor of a stochastic matrix, which encodes the probabilities that
a random surfer moves along intra- and interlayer links in a
combined random walk process (22). Clearly, this model can
be incorporated into our framework by setting the intra- and
interlayer influence weights to predetermined constants. Fur-
ther, a definition of multicentrality in multiplex networks has
been proposed in ref. 20, considering the influence from coun-
terpart nodes in other layers by importing the influence matrix
Q = (qαβ)∈RK×K . The influence matrix is nonnegative, and
qαβ measures the influence of layer β on layer α. One can calcu-
late eigenvector-like multicentrality of a multiplex network once
Q has been obtained. Observe that in ref. 20 the influence matrix
Q is predetermined and given as in a lower-dimensional form
(i.e., a matrix), whereas in our framework the influence tensor W
depends on the eigenvector multicentrality and hence they are
interdependent. Moreover, interconnected multilayer networks
have been proposed to predict diffusive and congestion processes
(23), where the undirected unweighted interlayer links connect
nodes to their counterparts in other layers. Eigenvector central-
ity in these networks is a special case of our framework where the
interlayer influence is equal to 1.

Leveraging Prior Knowledge about Interlayer Interactions. Quanti-
fying the influence tensor W is important to calculate multi-
centrality in our framework. As expected, the influence tensor
W is typically a function of the adjacency tensor M and the
multicentrality Φ, rather than being a constant. In practice, pre-
cisely predetermining the influence tensor is often infeasible.
One advantage of our general framework lies in the leveraging of
prior knowledge about the influence tensor W in diverse appli-
cations and the calculation of multicentrality even when W and
Φ are interdependent.

Consider a typical scenario in which all nodes are centrality
homogeneous and the layers are heterogeneous in a multilayer
network. In such a scenario, the multicentrality scores of all
nodes are comparable and can be represented by a vector C ∈
RN , where N is the number of all nodes. We call the eigenvector
multicentrality in such a scenario global multicentrality. We nor-
malize the multicentrality such that the vector C is defined over
an N -dimensional simplex. For example, in a multilayer network
consisting of web pages on different subjects (see Multicentral-
ity in Empirical Networks for further details), we may need to
compare the multicentrality scores of 2 web pages on different
subjects. Clearly, the multicentrality score propagates differently
along interlayer links and along intralayer links, owing to differ-
ences in the popularity of different subjects. Here, we assume
that the importance of layer α is a function of the multicentral-
ity of all nodes in layer α, denoted by f (Φ:α), where the colon
“:” indicates all elements of a given dimension (31). Notably, the
function f (·) describing the layer importance is dependent on
applications. The function f could be, for example, the L1-norm
f (Φ:α) = ‖Φ:α‖1, which means the aggregated multicentrality
scores of nodes in layer α, or it could be f (Φ:α) = ‖Φ:α‖1/nα,
which denotes the average multicentrality score over nodes in
layer α.

There are a variety of ways to define the influence tensor. In
this study, we define

W α
β = f (Φ:α)/f (Φ:β). [2]

That is to say, the interlayer influence between 2 layers depends
on their relative layer importance. It is clear that there is no gain
or loss for links between nodes in the same layer, because the
interlayer influence W α

α (α= 1, 2, · · · ,K ) is equal to 1. For links
from a node in a more important layer, there is a gain in the
multicentrality, and vice versa. Then the interaction tensor can

be written as H iα
jβ = f (Φ:α)

f (Φ:β)
·M iα

jβ . Further, we prove that λα =

λ1, ∀α ∈{1, 2, . . . ,K}, and Eq. 1 reduces to

H iα
jβ Φiα =λ1Φjβ , [3]

where λ1 is the leading eigenvalue of the interaction tensor H
and is irrelevant to β in this scenario. Notably, λ1 is also the
leading eigenvalue of the adjacency tensor M , indicating that
the interaction tensor H maintains the leading eigenvalue of
the adjacency tensor M (see SI Appendix, section V for further
details). From Eq. 3, we can see how the multicentrality score
propagates in a multilayer network. Considering that a node i in
layer α links to another node j in layer β, node i will propagate
its multicentrality score to node j scaled by an influence coef-
ficient W α

β , which could be a gain (W α
β > 1), a loss (W α

β < 1),
or even (W α

β = 1), and the multicentrality Φjβ comprises the
scores that node j in layer β gathers in the steady state. The
existence and uniqueness of the multicentrality Φ are proved in
SI Appendix, section V. For a given function f , we can calculate
the global multicentrality using the compressed power iteration
method introduced in Materials and Methods.

We consider another interesting scenario in which nodes in
different layers are heterogeneous and thus are not comparable.
For example, in a heterogeneous network consisting of authors
and papers, it is not meaningful to compare the multicentrality
of an author with that of a paper. Because the multicentrality
of nodes in different layers may have varying implications, we
can calculate the local multicentrality of nodes in each layer
only while taking into account the interlayer influence, where
local multicentrality means that the nodes in each (local) layer
are centrality homogeneous. In such a scenario, the multicen-
trality score of a node cannot simply propagate along interlayer
links to other layers. We measure the local multicentrality of
nodes in each layer by defining the influence tensor in the
framework as

W α
β =

∑N
i,j=1 M

jβ
iα Φjβ∑N

i,j=1 M
iα
jβ Φiα

. [4]

Note that the denominator
∑N

i,j=1 M
iα
jβ Φiα in W α

β is a normaliz-
ing constant, which is the sum of scores propagating along
interlayer links from layer α to layer β. Moreover, the sum of
interactions from nodes in layer α to nodes in layer β is given
by the numerator

∑N
i,j=1 M

jβ
iα Φjβ , which is the sum of scores

propagating from layer β to layer α. Therefore, by defining the
influence tensor in Eq. 4, we assume that the score flow going
out of 1 layer is returned to the layer. In such a way, we can
calculate the local multicentrality of nodes in each layer inde-
pendently while the interlayer influence is taken into account.
The detailed proofs of the existence and uniqueness of Φ in local
multicentrality are provided in SI Appendix, section VI. We can
also calculate the local multicentrality Φ numerically using the
compressed power iteration method.

Because the prior knowledge is network specific and applica-
tion dependent, we present 2 interesting scenarios, for global
multicentrality and local multicentrality, respectively, to illus-
trate how to leverage prior knowledge to find W and compute
the multicentrality of nodes. The PageRank algorithm has been
widely used in social, transportation, biology, and information
network analyses for link prediction, recommendation, etc. (32).
Note that PageRank centrality is a variant of eigenvector central-
ity. In PageRank centrality, each node distributes its PageRank
score to its neighbors along outgoing links on an equal footing,
and a node’s PageRank score is defined as the sum of scores
that it gathers from its neighbors in the steady state. Our eigen-
vector multicentrality framework can be easily carried over to
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characterize PageRank multicentrality (see SI Appendix, section
IV for further details about PageRank multicentrality).

Multicentrality in Empirical Networks. We first consider a dataset
from Wikipedia consisting of 4,604 web pages (see Materials and
Methods for further details about this dataset and how it has
been obtained). The web pages are divided by Wikipedia into
15 subjects, including art, business studies, citizenship, coun-
tries, design and technology, everyday life, geography, history,
IT, language and literature, mathematics, music, people, reli-
gion, and science, and 1 web page belongs solely to 1 subject.
We build a multilayer network by placing web pages of the
same subject in the same layer and establishing a directed link
between 2 web pages if there is a hyperlink between them
(a subnetwork is shown in Fig. 1A). For comparison, we also
build a single-layer network by aggregating all web pages in
all layers (see SI Appendix, Fig. S4 for further details). We
select 4,128 web pages from these, to guarantee that the net-
work is connected and all nodes have at least 1 out-degree and
1 in-degree.

We measure the PageRank multicentrality of web pages in
the constructed multilayer network. Moreover, because web
pages in different subjects are centrality homogeneous, global
PageRank multicentrality is used. We consider 3 common
forms for layer importance f (·): f1(Φ:α) = ln(1 +N · |Φ:α|1/nα),
f2(Φ:α) = |Φ:α|∞, and f3(Φ:α) = |Φ:α|1/nα. Table 1 shows the
results of global PageRank multicentrality (f = f1) in the
Wikipedia multilayer network and PageRank centrality in the ag-
gregated Wikipedia network, where the digits in parenthe-
ses indicate the differences between these 2 rankings (see SI
Appendix, Tables S1–S3 for further details).

Note that the entry “United States” has the largest multi-
centrality score, because it has the largest number of incoming
links. Furthermore, the web pages linked to it have high multi-
centrality scores. The entry “Europe” in the layer “Geography”
has many enhanced links from nodes in the layer “Countries,”
because the average PageRank multicentrality score of nodes
in Countries is higher than that in Geography. “France” has
large numbers of incoming links from entries in the layers “Art,”
“Music,” and other subjects; scores along these incoming links,
however, will be diminished since Art and Music are less impor-
tant than Countries. Note that the entry “Television” is signifi-
cantly promoted, because the layer importance of “Design and
technology” is relatively low. Global multicentrality can effec-
tively quantify the influence between layers even when we have
limited prior knowledge, rather than aggregating all nodes with-
out considering interlayer influence, as shown in many previous
methods.

Eigenvector multicentrality is an effective predictor for search-
ing for the most important node in multilayer networks, which is

Table 1. Comparison between the ranking by global PageRank
multicentrality in the multilayer network and the ranking by
PageRank centrality in the aggregated network

Global PageRank PageRank
Entry Layer multicentrality centrality

United States Countries 1 1 (+0)
Europe Geography 2 3 (+1)
World War II History 3 7 (+4)
France Countries 8 2 (−6)
Animal Science 9 77 (+68)
Christianity Religion 17 19 (+2)
Earth Science 18 39 (+21)
20th century History 26 37 (+11)
Agriculture Everyday life 28 49 (+21)
Television Design and technology 61 197 (+136)

Fig. 2. PageRank multicentrality, PageRank centrality, and degree central-
ity in the Wikipedia multilayer network. The line chart shows the Spearman
correlation coefficients for different numbers of top web pages, where the
horizontal axis denotes the number of top nodes that we select, and the ver-
tical axis represents the corresponding Spearman correlation coefficients.
When the number of nodes is smaller than 200 (5% of the total nodes),
the degree centrality has better performance. However, when more nodes
are involved, the multicentrality performs better. In particular, the Spear-
man correlation coefficients reach 0.80 for all nodes under the 3 proposed
multicentrality measures.

also validated by the results obtained from the page views (PVs)
in Wikispeedia. Wikispeedia is a human-computation game (33),
in which users are requested to navigate from a given web
page to a target one by clicking only on Wikipedia links. We
collect all completed navigation paths and obtain the PVs of
each web page from Wikispeedia. For all entries, we calculate
their PageRank multicentrality scores and PageRank centrality
and degree centrality scores and compare them to their PVs in
Wikispeedia (see SI Appendix, Tables S4–S8 for further details).
The results are shown in Figs. 2 and 3. We also list the aver-
age PageRank multicentrality score of each layer (subjects) in
Wikipedia (see SI Appendix, Tables S9–S11 for further details).
The Spearman rank correlation coefficients show that PageRank
multicentrality outperforms PageRank centrality and degree
centrality in the aggregated network.

Next, we consider a transportation network consisting of air-
ports and air routes between them. We first consider 450 airports
in Europe (34) (see Materials and Methods for details about this
dataset and how it has been obtained), and we focus on 3 main
airlines. We then build a multiplex network with 3 layers (air-
lines) and 450 nodes (airports) in each layer as shown in Fig. 1B,
where the dotted lines are interlayer links between airports
and their counterparts in other layers. We measure the global
PageRank multicentrality in the multiplex network using 3
forms of layer importance: f1(Φ:α) = e|Φ:α|1/nα − 1, f2(Φ:α) =
|Φ:α|1/nα, and f3(Φ:α) = ln(1 +N · |Φ:α|1/nα). Then, the
PageRank multicentrality score of each airport is obtained by
assembling the multicentrality scores of all its counterparts in
all layers. For comparison, we also build a single-layer network,
called the aggregated network, by combining the same airports
in the 3 layers. We further introduce the versatility, a good
predictor for diffusive and congestion processes in multilayer
networks (23), which is a special case of our framework when
setting all components of the influence tensor W to 1. We
focus on the coverage ρ(t), a suitable proxy for the exploration
efficiency of the network (35), defined as the average fraction
of distinct nodes being visited up to time t regardless of the

15410 | www.pnas.org/cgi/doi/10.1073/pnas.1801378116 Wu et al.
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Rank by PageRank multicentrality: 
Fig. 3. Scatter diagram of the ranks of the entries by multicentrality and
by PVs. The diagram shows the PageRank multicentrality of all nodes when
f = f1 (see SI Appendix, Fig. S5 for additional diagrams), where the horizon-
tal axis denotes the rank of the entries by multicentrality and the vertical
axis represents the rank of the entries by PVs in Wikispeedia. The Spearman
correlation coefficient between the 2 rankings is 0.80.

layer, assuming that a walker starts from a certain node in the
network (see Materials and Methods for further details about
the coverage). We investigate whether multicentrality helps to
understand the role that a node plays in dynamical scenarios.
To this end, we compute the Spearman correlation coefficient
between the ranking of the airports by multicentrality and that
by the coverage at time t of a hypothetical epidemic spreading
process that starts from a certain airport. For comparison,
we also compute baselines such as the rankings by versatility
and PageRank centrality in the aggregated network (see SI
Appendix, Tables S12–S14 for further details). We calculate
the Spearman correlation coefficients for these 5 methods
at each time step, and the results are shown in Fig. 4, where
the time ranges from t = 1 to t = 4, 000. It is shown that the
3 multicentrality measures achieve higher accuracy (their
correlation coefficients exceed 0.947) in the steady state
(t ≥ 3, 000). We then perform a similar analysis on an airline
network from the United States, which contains the airlines
flying from the United States on Jan 3, 2008 (with data provided
by the American Statistical Association Sections on Statistical
Computing, http://stat-computing.org/). We build a multiplex
network with 20 layers and 284 nodes in each layer, and a similar
conclusion can be drawn (see SI Appendix, Table S15 for further
details).

Another real-world example we consider is a social network,
constructed from a large European research institution with
1,005 nodes (individuals) and 42 layers (departments), on which
we consider an epidemic spreading process. The simulation
results indicate that the nodes with higher eigenvector multi-
centrality play a more important role in the epidemic spreading
process (see SI Appendix, section VII for details).

Discussion
As shown in recent work on eigenvector centrality (and its vari-
ants) (36–38), it is of significant interest to build a framework for
studying eigenvector-like centrality in multilayer networks. The
existing studies, however, assumed empirical influence coeffi-
cients or relied on specific types of multilayer networks. Here we
develop a general framework for studying eigenvector multicen-
trality in multilayer networks, which enables the quantification
of the impact of interlayer influence on eigenvector multicen-
trality, providing an analytical tool to describe how eigenvector

multicentrality propagates among different layers. Further, this
framework can easily leverage prior knowledge about the inter-
play among layers to characterize eigenvector multicentrality for
varying scenarios. As the interlayer influence and multicentral-
ity of nodes are interdependent, they are jointly solved using a
compressed power iteration method. Furthermore, we formulate
and analyze PageRank multicentrality for practical applications
within the proposed framework. We also perform theoretical
analyses to prove the existence and uniqueness of the solutions
in SI Appendix, sections V and VI, which allows us to calculate
global and local multicentrality in any strongly connected mul-
tilayer networks. For an arbitrary multilayer network, we treat
a dead end (a node with no outgoing links) the same as if it
had outgoing links to all nodes and introduce a damping factor
to guarantee the existence and uniqueness of the solution. The
results from empirical networks demonstrate that our general
framework can effectively quantify the interlayer influence, and
eigenvector multicentrality is a good measure to identify impor-
tant nodes from both structural and dynamical perspectives.
Thus, multicentrality aids in understanding and predicting the
behaviors of dynamic processes by leveraging network structure
and describes the structure–function relationship of multilayer
networks well.

We believe that the concept of multicentrality has the poten-
tial to offer a deep understanding of the structure and function
of multilayer networks. Because the real-world scenarios of mul-
tilayer networks vary, a key step is to find appropriate forms of
interlayer influence for theoretical analyses. Here we consider
2 interesting scenarios, for global multicentrality and local mul-
ticentrality, respectively. We believe that the proposed tensor-
based framework can be applied to more empirical networks
in various scenarios, including social networks, transportation
networks, biological networks, etc.

Materials and Methods
Numerical Solution. The crux of the proposed framework is to solve the
tensorial equation

Hiα
jβΦiα =λβΦjβ , [5]

where the solution Φ is the multicentrality tensor. To obtain the numeri-
cal solution, we first flatten the adjacency tensor M into a matrix; i.e., we
represent the fourth-order tensor M∈RN×N×K×K as a matrix M∈RNK×NK ,
where M denotes the lower-dimensional form of the tensor M. Then we

Multicentrality:  
Multicentrality:  
Multicentrality:  

Fig. 4. Comparison of PageRank multicentrality, PageRank versatility, and
degree centrality for the European airline network. The Spearman corre-
lation coefficients in the dynamical process are plotted. When t≥ 3, 000,
these 5 curves of correlation coefficients tend to be stable, and there is a
gap between the multicentrality measure and other measures.
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vectorize the second-order tensor Φ∈RN×K into a supravector Φ∈RNK and
denote by W the matrix form of the influence tensor W (see SI Appendix,
section II for further details of tensor decomposition). Further, we denote by
Λ = [λ1,λ2, · · · ,λK ]> ∈RK a vector encoding the normalizing coefficient in
each layer. Thus, we obtain the matrix equation

(
W �M

)>
·Φ = Λ�Φ, [6]

where� denotes the Khatri–Rao product and W = W(M, Φ) is a function of
the matrix M and the multicentrality Φ.

For the numerical solution, we propose a compressed power iteration
method, whose iteration scheme is

Φ
(k+1)

= Φ
(k)

+ D(k)
[(

W �M
)>(k)

�Ω
(k)− EN

]
Φ

(k), [7]

where Ω(k) = [ω(k)
1 ,ω(k)

2 , · · · ,ω(k)
K ]∈RK is the normalizing vector. Denoting

B(k) = (W �M)>(k)�Ω(k)− EN, we can write the iteration scheme as

Φ
(k+1)

= Φ
(k)

+ D(k)B(k)
Φ

(k), [8]

where D(k) ∈RN×N is a diagonal matrix related to B(k), and D(k) compresses
the induced infinity norm of the matrix B(k) such that the L1 norm of each
row in D(k)B(k) is strictly less than 1.

Specifically, we let ω(k)
γ = ‖Φ(k)

γ ‖
−1

1
. With regard to the global

multicentrality, the vector Λ contains equivalent elements; i.e., Λ =

[λ1,λ1, · · · ,λ1]>. Thus, we have Ω(k) = [ω(k)
1 ,ω(k)

1 , · · · ,ω(k)
1 ]>, where ω(k)

1 =

‖Φ(k)‖
−1

1 . Further, we can specify the diagonal matrix D(k) to compress the
induced infinity norm of matrix B(k), where D(k) is not unique in practice.

For example, we could take D(k) =
(

diag
{

(B(k) + EN) · 1N×1

})−1
. Then for

each Φ
(k)
> 0 (i.e., all of the components in Φ

(k) are positive), the matrix
[EN + D(k)B(k)] is strictly diagonal dominant with positive elements. Hence,
the iterations in Eq. 8 converge to a unique solution (39, 40) and this solution
satisfies the matrix Eq. 6 (see SI Appendix, section VIII for further details).

Multilayer Network of Wikipedia. The Wikipedia dataset contains 4,604
entries and 119,882 hyperlinks (41) (data provided by the Stanford Network
Analysis Project, http://snap.stanford.edu/index.html). To ensure connectiv-
ity, we select the entries that have at least 1 out-degree and 1 in-degree.
Then 4,128 entries and 113,441 links are obtained and these entries are
divided into 15 subjects by Wikipedia. Resultantly, we can build a multilayer
network with N = 4, 128 nodes and K = 15 layers, where each layer con-
tains the entries of a single subject. The adjacency tensor M∈RN×N×K×K

encodes the directed and unweighted links of the multilayer network and
the influence tensor W ∈RK×K encodes the interlayer influence between
any 2 layers. We measure the interlayer influence

Wα
β = f(Φ:α)/f(Φ:β ), [9]

where f(Φ:α) indicates the layer importance of layer α. Here, we consider
3 forms of layer importance: f1(Φ:α) = ln(1 + N · |Φ:α|1/nα), f2(Φ:α) =

|Φ:α|∞, and f3(Φ:α) = |Φ:α|1/nα. Further, we obtain the inter-
action tensor H∈RN×N×K×K as Hiα

jβ = Wα
β Miα

jβ . Following the
construction of the interaction tensor H, we then solve the tensorial
equation

Hiα
jβΦiα =λ1Φjβ [10]

using the compressed iteration method. Finally, the multicentrality tensor
Φ is in the space RN×K , and Φiα represents the multicentrality of node i in
layer α.

Multilayer Network of the European Airlines. The European airline network
contains 450 airports in Europe and the air routes for 37 airlines (see ref.
34 for more details about this dataset). For each airline, we can build a net-
work with N = 450 nodes and a set of links representing routes between
airports. We select those airlines with the number of air routes greater
than N/2, such that the average degree for each node in the constructed
network is at least 1. In this way, we obtain 3 main airlines: Ryanair,
Lufthansa, and Easyjet. We thus have a multiplex network with K = 3 lay-
ers and 450 nodes in each layer. Then, we interconnect the same airport
across layers, obtaining a 3-layer multiplex network. The adjacency tensor
M is in the space RN×N×K×K . In the context of the multiplex network,
Miα

jα encodes the undirected and unweighted intralayer links in layer α,

while Mjα
jβ = 1 encodes the undirected and unweighted interlayer link for

node j between layer α and layer β. For the interlayer influence, we
again consider 3 forms of the layer importance: f1(Φ:α) = e|Φ:α|1/nα − 1,
f2(Φ:α) = |Φ:α|1/nα, and f3(Φ:α) = ln(1 + N · |Φ:α|1/nα). After obtaining
the influence tensor W via Eq. 2, we have the interaction tensor Hiα

jβ =

Wα
β Miα

jβ in the space RN×N×K×K . Finally, we solve the tensorial Eq. 3
using the compressed iteration method and obtain the multicentrality
tensor Φiα.

With respect to the coverage ρ(t), we have

ρ(t) = 1−
1

N2

N∑
i,j=1

δi,j(0)exp
[
−Pj(0)PE>i

]
, [11]

where δi,j(0) = 0 for j = i, and δi,j(0) = 1 otherwise. Here, Pj(0) represents the
supravector of probabilities at time t = 0 (assuming that the walker starts
at node j) and the matrix P indicates the probability of reaching each node
through any path of length 1, 2, . . . , t + 1. Furthermore, Ei = (ei , ei , . . . , ei)
is the supravector in which ei is the ith canonical row vector (see ref. 35 for
details about the derivation of Eq. 11).
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35. M. De Domenico, A. Solé-Ribalta, S. Gómez, A. Arenas, Navigability of interconnected
networks under random failures. Proc. Natl. Acad. Sci. U.S.A. 111, 8351–8356 (2014).

36. D. Taylor, S. A. Myers, A. Clauset, M. A. Porter, P. J. Mucha, Eigenvector-based
centrality measures for temporal networks. Multiscale Model. Simul. 15, 537–574
(2017).
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